If it's not what You are looking for type in the equation solver your own equation and let us solve it.
^2+4Y^2=16
We move all terms to the left:
^2+4Y^2-(16)=0
determiningTheFunctionDomain 4Y^2-16+^2=0
We add all the numbers together, and all the variables
4Y^2=0
a = 4; b = 0; c = 0;
Δ = b2-4ac
Δ = 02-4·4·0
Δ = 0
Delta is equal to zero, so there is only one solution to the equation
Stosujemy wzór:$Y=\frac{-b}{2a}=\frac{0}{8}=0$
| -8(2+2x)-1=-81 | | x+2x+4x=357 | | -4k^2-8k=0 | | 3t=4=12=3t | | 6b-24=3b | | x/8+11=15 | | 36-v=3v | | 2x-(-6)=-28 | | 1/2x+x+2x=357 | | H=64t-16t | | 1/4x+1/8x=15 | | 3x-(1+10)=50 | | x/2-7=2x+4 | | 11y=15+6y | | a^2+4a=96 | | 189=3(7-7x) | | 16+2x=42-x | | x+x+2=x+4-3 | | a-18=137/10 | | -(2x-3)=3-3x | | -7(1+4a)=161 | | -4n-8=-4(-3n+2) | | 75,000=10,000(1.09)7t | | 3x-1+10=50 | | 90+24^2^3+x=180 | | 5=6+k | | -8-6x=10+8x | | 6x+15=3x=6 | | -n/5=-10 | | -6(8-5v)=-198 | | 3x-3x/6=24 | | 2y-17=11 |